期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2018
卷号:9
期号:12
DOI:10.14569/IJACSA.2018.091246
出版社:Science and Information Society (SAI)
摘要:This research aims to get optimal collision of schedule by using certainty variables. Courses scheduling is conducted by ant colony algorithm. Setting parameters for intensity is bigger than 0, visibility track is bigger than 0, and evaporation of ant track is 0.03. Variables are used such as a number of lecturers, courses, classes, timeslot and time. Performance of ant colony algorithms is measured by how many schedules same time and class collided. Based on executions, with a total of 175 schedules, the average of a cycle is 9 cycles (exactly is 9.2 cycles) and an average of time process is 29.98 seconds. Scheduling, in nine experiments, has an average of time process of 19.99 seconds. Performance of ant colony algorithm is given scheduling process more efficient and predicted schedule collision.