期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2018
卷号:9
期号:12
DOI:10.14569/IJACSA.2018.091277
出版社:Science and Information Society (SAI)
摘要:Bloom Filter is extensively deployed data structure in various applications and research domain since its inception. Bloom Filter is able to reduce the space consumption in an order of magnitude. Thus, Bloom Filter is used to keep information of a very large scale data. There are numerous variants of Bloom Filters available, however, scalability is a serious dilemma of Bloom Filter for years. To solve this dilemma, there are also diverse variants of Bloom Filter. However, the time complexity and space complexity become the key issue again. In this paper, we present a novel Bloom Filter to address the scalability issue without compromising the performance, called scaleBF. scaleBF deploys many 3D Bloom Filter to filter the set of items. In this paper, we theoretically compare the contemporary Bloom Filter for scalability and scaleBF outperforms in terms of time complexity.