期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2018
卷号:9
期号:11
DOI:10.14569/IJACSA.2018.091104
出版社:Science and Information Society (SAI)
摘要:In this paper, the task of fraud detection using the methods of data analysis and machine learning based on social and transaction graphs is considered. The algorithms for feature calculation, outlier detection and identifying specific sub-graph patterns are proposed. Software realization of the proposed algorithms is described and the results of experimental study of the algorithms on the sets of real and synthetic data are presented.