首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Automatic Short Answer Scoring based on Paragraph Embeddings
  • 本地全文:下载
  • 作者:Sarah Hassan ; Aly A. Fahmy ; Mohammad El-Ramly
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2018
  • 卷号:9
  • 期号:10
  • DOI:10.14569/IJACSA.2018.091048
  • 出版社:Science and Information Society (SAI)
  • 摘要:Automatic scoring systems for students’ short answers can eliminate from instructors the burden of grading large number of test questions and facilitate performing even more assessments during lectures especially when number of students is large. This paper presents a supervised learning approach for short answer automatic scoring based on paragraph embeddings. We review significant deep learning based models for generating paragraph embeddings and present a detailed empirical study of how the choice of paragraph embedding model influences accuracy in the task of automatic scoring.
  • 关键词:Automatic scoring; short answer; Pearson correlation coefficient; RMSE; deep learning
国家哲学社会科学文献中心版权所有