首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Approximation Algorithms for Facial Cycles in Planar Embeddings
  • 本地全文:下载
  • 作者:Giordano Da Lozzo ; Ignaz Rutter
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:123
  • 页码:1-13
  • DOI:10.4230/LIPIcs.ISAAC.2018.41
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Consider the following combinatorial problem: Given a planar graph G and a set of simple cycles C in G, find a planar embedding E of G such that the number of cycles in C that bound a face in E is maximized. This problem, called Max Facial C-Cycles, was first studied by Mutzel and Weiskircher [IPCO '99, http://dx.doi.org/10.1007/3-540-48777-8_27) and then proved NP-hard by Woeginger [Oper. Res. Lett., 2002, http://dx.doi.org/10.1016/S0167-6377(02)00119-0]. We establish a tight border of tractability for Max Facial C-Cycles in biconnected planar graphs by giving conditions under which the problem is NP-hard and showing that strengthening any of these conditions makes the problem polynomial-time solvable. Our main results are approximation algorithms for Max Facial C-Cycles. Namely, we give a 2-approximation for series-parallel graphs and a (4+epsilon)-approximation for biconnected planar graphs. Remarkably, this provides one of the first approximation algorithms for constrained embedding problems.
  • 关键词:Planar Embeddings; Facial Cycles; Complexity; Approximation Algorithms
国家哲学社会科学文献中心版权所有