首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Extensions of Self-Improving Sorters
  • 本地全文:下载
  • 作者:Siu-Wing Cheng ; Lie Yan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:123
  • 页码:1-12
  • DOI:10.4230/LIPIcs.ISAAC.2018.63
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Ailon et al. (SICOMP 2011) proposed a self-improving sorter that tunes its performance to the unknown input distribution in a training phase. The distribution of the input numbers x_1,x_2,...,x_n must be of the product type, that is, each x_i is drawn independently from an arbitrary distribution D_i, and the D_i's are independent of each other. We study two extensions that relax this requirement. The first extension models hidden classes in the input. We consider the case that numbers in the same class are governed by linear functions of the same hidden random parameter. The second extension considers a hidden mixture of product distributions.
  • 关键词:sorting; self-improving algorithms; entropy
国家哲学社会科学文献中心版权所有