首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:(Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras
  • 本地全文:下载
  • 作者:Barbara K{\"o}nig ; Christina Mika-Michalski
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:118
  • 页码:1-17
  • DOI:10.4230/LIPIcs.CONCUR.2018.37
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Behavioural equivalences can be characterized via bisimulations, modal logics and spoiler-defender games. In this paper we review these three perspectives in a coalgebraic setting, which allows us to generalize from the particular branching type of a transition system. We are interested in qualitative notions (classical bisimulation) as well as quantitative notions (bisimulation metrics). Our first contribution is to introduce a spoiler-defender bisimulation game for coalgebras in the classical case. Second, we introduce such games for the metric case and furthermore define a real-valued modal coalgebraic logic, from which we can derive the strategy of the spoiler. For this logic we show a quantitative version of the Hennessy-Milner theorem.
  • 关键词:coalgebra; bisimulation games; spoiler-defender games; behavioural metrics; modal logic
国家哲学社会科学文献中心版权所有