首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2)
  • 本地全文:下载
  • 作者:Sevag Gharibian ; Miklos Santha ; Jamie Sikora
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:117
  • 页码:1-16
  • DOI:10.4230/LIPIcs.MFCS.2018.58
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The polynomial-time hierarchy (PH) has proven to be a powerful tool for providing separations in computational complexity theory (modulo standard conjectures such as PH does not collapse). Here, we study whether two quantum generalizations of PH can similarly prove separations in the quantum setting. The first generalization, QCPH, uses classical proofs, and the second, QPH, uses quantum proofs. For the former, we show quantum variants of the Karp-Lipton theorem and Toda's theorem. For the latter, we place its third level, Q Sigma_3, into NEXP using the Ellipsoid Method for efficiently solving semidefinite programs. These results yield two implications for QMA(2), the variant of Quantum Merlin-Arthur (QMA) with two unentangled proofs, a complexity class whose characterization has proven difficult. First, if QCPH=QPH (i.e., alternating quantifiers are sufficiently powerful so as to make classical and quantum proofs "equivalent"), then QMA(2) is in the Counting Hierarchy (specifically, in P^{PP^{PP}}). Second, unless QMA(2)= Q Sigma_3 (i.e., alternating quantifiers do not help in the presence of "unentanglement"), QMA(2) is strictly contained in NEXP.
  • 关键词:Complexity Theory; Quantum Computing; Polynomial Hierarchy; Semidefinite Programming; QMA(2); Quantum Complexity
国家哲学社会科学文献中心版权所有