首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Maximum Area Axis-Aligned Square Packings
  • 本地全文:下载
  • 作者:Hugo A. Akitaya ; Matthew D. Jones ; David Stalfa
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:117
  • 页码:1-15
  • DOI:10.4230/LIPIcs.MFCS.2018.77
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a point set S={s_1,... , s_n} in the unit square U=[0,1]^2, an anchored square packing is a set of n interior-disjoint empty squares in U such that s_i is a corner of the ith square. The reach R(S) of S is the set of points that may be covered by such a packing, that is, the union of all empty squares anchored at points in S. It is shown that area(R(S))>= 1/2 for every finite set S subset U, and this bound is the best possible. The region R(S) can be computed in O(n log n) time. Finally, we prove that finding a maximum area anchored square packing is NP-complete. This is the first hardness proof for a geometric packing problem where the size of geometric objects in the packing is unrestricted.
  • 关键词:square packing; geometric optimization
国家哲学社会科学文献中心版权所有