首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Results on the Dimension Spectra of Planar Lines
  • 本地全文:下载
  • 作者:Donald M. Stull
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:117
  • 页码:1-15
  • DOI:10.4230/LIPIcs.MFCS.2018.79
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper we investigate the (effective) dimension spectra of lines in the Euclidean plane. The dimension spectrum of a line L_{a,b}, sp(L), with slope a and intercept b is the set of all effective dimensions of the points (x, ax + b) on L. It has been recently shown that, for every a and b with effective dimension less than 1, the dimension spectrum of L_{a,b} contains an interval. Our first main theorem shows that this holds for every line. Moreover, when the effective dimension of a and b is at least 1, sp(L) contains a unit interval. Our second main theorem gives lower bounds on the dimension spectra of lines. In particular, we show that for every alpha in [0,1], with the exception of a set of Hausdorff dimension at most alpha, the effective dimension of (x, ax + b) is at least alpha + dim(a,b)/2. As a consequence of this theorem, using a recent characterization of Hausdorff dimension using effective dimension, we give a new proof of a result by Molter and Rela on the Hausdorff dimension of Furstenberg sets.
  • 关键词:algorithmic randomness; geometric measure theory; Hausdorff dimension; Kolmogorov complexity
国家哲学社会科学文献中心版权所有