首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Low Rank Approximation in the Presence of Outliers
  • 本地全文:下载
  • 作者:Aditya Bhaskara ; Srivatsan Kumar
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:116
  • 页码:1-16
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2018.4
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problem of principal component analysis (PCA) in the presence of outliers. Given a matrix A (d x n) and parameters k, m, the goal is to remove a set of at most m columns of A (outliers), so as to minimize the rank-k approximation error of the remaining matrix (inliers). While much of the work on this problem has focused on recovery of the rank-k subspace under assumptions on the inliers and outliers, we focus on the approximation problem. Our main result shows that sampling-based methods developed in the outlier-free case give non-trivial guarantees even in the presence of outliers. Using this insight, we develop a simple algorithm that has bi-criteria guarantees. Further, unlike similar formulations for clustering, we show that bi-criteria guarantees are unavoidable for the problem, under appropriate complexity assumptions.
  • 关键词:Low rank approximation; PCA; Robustness to outliers
国家哲学社会科学文献中心版权所有