首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Semi-Direct Sum Theorem and Nearest Neighbor under l_infty
  • 本地全文:下载
  • 作者:Mark Braverman ; Young Kun Ko
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:116
  • 页码:1-17
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2018.6
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We introduce semi-direct sum theorem as a framework for proving asymmetric communication lower bounds for the functions of the form V_{i=1}^n f(x,y_i). Utilizing tools developed in proving direct sum theorem for information complexity, we show that if the function is of the form V_{i=1}^n f(x,y_i) where Alice is given x and Bob is given y_i's, it suffices to prove a lower bound for a single f(x,y_i). This opens a new avenue of attack other than the conventional combinatorial technique (i.e. "richness lemma" from [Miltersen et al., 1995]) for proving randomized lower bounds for asymmetric communication for functions of such form. As the main technical result and an application of semi-direct sum framework, we prove an information lower bound on c-approximate Nearest Neighbor (ANN) under l_infty which implies that the algorithm of [Indyk, 2001] for c-approximate Nearest Neighbor under l_infty is optimal even under randomization for both decision tree and cell probe data structure model (under certain parameter assumption for the latter). In particular, this shows that randomization cannot improve [Indyk, 2001] under decision tree model. Previously only a deterministic lower bound was known by [Andoni et al., 2008] and randomized lower bound for cell probe model by [Kapralov and Panigrahy, 2012]. We suspect further applications of our framework in exhibiting randomized asymmetric communication lower bounds for big data applications.
  • 关键词:Asymmetric Communication Lower Bound; Data Structure Lower Bound; Nearest Neighbor Search
国家哲学社会科学文献中心版权所有