摘要:We consider clustering in the perturbation resilience model that has been studied since the work of Bilu and Linial [Yonatan Bilu and Nathan Linial, 2010] and Awasthi, Blum and Sheffet [Awasthi et al., 2012]. A clustering instance I is said to be alpha-perturbation resilient if the optimal solution does not change when the pairwise distances are modified by a factor of alpha and the perturbed distances satisfy the metric property - this is the metric perturbation resilience property introduced in [Angelidakis et al., 2017] and a weaker requirement than prior models. We make two high-level contributions. - We show that the natural LP relaxation of k-center and asymmetric k-center is integral for 2-perturbation resilient instances. We belive that demonstrating the goodness of standard LP relaxations complements existing results [Maria{-}Florina Balcan et al., 2016; Angelidakis et al., 2017] that are based on new algorithms designed for the perturbation model. - We define a simple new model of perturbation resilience for clustering with outliers. Using this model we show that the unified MST and dynamic programming based algorithm proposed in [Angelidakis et al., 2017] exactly solves the clustering with outliers problem for several common center based objectives (like k-center, k-means, k-median) when the instances is 2-perturbation resilient. We further show that a natural LP relxation is integral for 2-perturbation resilient instances of k-center with outliers.
关键词:Clustering; Perturbation Resilience; LP Integrality; Outliers; Beyond Worst Case Analysis