首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:On Geodesically Convex Formulations for the Brascamp-Lieb Constant
  • 本地全文:下载
  • 作者:Suvrit Sra ; Nisheeth K. Vishnoi ; Ozan Yildiz
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:116
  • 页码:1-15
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2018.25
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider two non-convex formulations for computing the optimal constant in the Brascamp-Lieb inequality corresponding to a given datum and show that they are geodesically log-concave on the manifold of positive definite matrices endowed with the Riemannian metric corresponding to the Hessian of the log-determinant function. The first formulation is present in the work of Lieb [Lieb, 1990] and the second is new and inspired by the work of Bennett et al. [Bennett et al., 2008]. Recent work of Garg et al. [Ankit Garg et al., 2017] also implies a geodesically log-concave formulation of the Brascamp-Lieb constant through a reduction to the operator scaling problem. However, the dimension of the arising optimization problem in their reduction depends exponentially on the number of bits needed to describe the Brascamp-Lieb datum. The formulations presented here have dimensions that are polynomial in the bit complexity of the input datum.
  • 关键词:Geodesic convexity; positive definite cone; geodesics; Brascamp-Lieb constant
国家哲学社会科学文献中心版权所有