首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Optimal Deterministic Extractors for Generalized Santha-Vazirani Sources
  • 本地全文:下载
  • 作者:Salman Beigi ; Andrej Bogdanov ; Omid Etesami
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:116
  • 页码:1-15
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2018.30
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let F be a finite alphabet and D be a finite set of distributions over F. A Generalized Santha-Vazirani (GSV) source of type (F, D), introduced by Beigi, Etesami and Gohari (ICALP 2015, SICOMP 2017), is a random sequence (F_1, ..., F_n) in F^n, where F_i is a sample from some distribution d in D whose choice may depend on F_1, ..., F_{i-1}. We show that all GSV source types (F, D) fall into one of three categories: (1) non-extractable; (2) extractable with error n^{-Theta(1)}; (3) extractable with error 2^{-Omega(n)}. We provide essentially randomness-optimal extraction algorithms for extractable sources. Our algorithm for category (2) sources extracts one bit with error epsilon from n = poly(1/epsilon) samples in time linear in n. Our algorithm for category (3) sources extracts m bits with error epsilon from n = O(m + log 1/epsilon) samples in time min{O(m2^m * n),n^{O(|F|)}}. We also give algorithms for classifying a GSV source type (F, D): Membership in category (1) can be decided in NP, while membership in category (3) is polynomial-time decidable.
  • 关键词:feasibility of randomness extraction; extractor lower bounds; martingales
国家哲学社会科学文献中心版权所有