首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Mapping Wildlife Species Distribution With Social Media: Augmenting Text Classification With Species Names (Short Paper)
  • 本地全文:下载
  • 作者:Shelan S. Jeawak ; Christopher B. Jones ; Steven Schockaert
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:114
  • 页码:1-6
  • DOI:10.4230/LIPIcs.GISCIENCE.2018.34
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Social media has considerable potential as a source of passive citizen science observations of the natural environment, including wildlife monitoring. Here we compare and combine two main strategies for using social media postings to predict species distributions: (i) identifying postings that explicitly mention the target species name and (ii) using a text classifier that exploits all tags to construct a model of the locations where the species occurs. We find that the first strategy has high precision but suffers from low recall, with the second strategy achieving a better overall performance. We furthermore show that even better performance is achieved with a meta classifier that combines data on the presence or absence of species name tags with the predictions from the text classifier.
  • 关键词:Social media; Text mining; Volunteered Geographic Information; Ecology
国家哲学社会科学文献中心版权所有