首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:Geosocial Media Data as Predictors in a GWR Application to Forecast Crime Hotspots (Short Paper)
  • 本地全文:下载
  • 作者:Alina Ristea ; Ourania Kounadi ; Michael Leitner
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:114
  • 页码:1-7
  • DOI:10.4230/LIPIcs.GISCIENCE.2018.56
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper we forecast hotspots of street crime in Portland, Oregon. Our approach uses geosocial media posts, which define the predictors in geographically weighted regression (GWR) models. We use two predictors that are both derived from Twitter data. The first one is the population at risk of being victim of street crime. The second one is the crime related tweets. These two predictors were used in GWR to create models that depict future street crime hotspots. The predicted hotspots enclosed more than 23% of the future street crimes in 1% of the study area and also outperformed the prediction efficiency of a baseline approach. Future work will focus on optimizing the prediction parameters and testing the applicability of this approach to other mobile crime types.
  • 关键词:spatial crime prediction; street crime; population at risk; geographically weighted regression; geosocial media
国家哲学社会科学文献中心版权所有