首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Approximate Convex Intersection Detection with Applications to Width and Minkowski Sums
  • 本地全文:下载
  • 作者:Sunil Arya ; Guilherme D. da Fonseca ; David M. Mount
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:112
  • 页码:1-14
  • DOI:10.4230/LIPIcs.ESA.2018.3
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Approximation problems involving a single convex body in R^d have received a great deal of attention in the computational geometry community. In contrast, works involving multiple convex bodies are generally limited to dimensions d <= 3 and/or do not consider approximation. In this paper, we consider approximations to two natural problems involving multiple convex bodies: detecting whether two polytopes intersect and computing their Minkowski sum. Given an approximation parameter epsilon > 0, we show how to independently preprocess two polytopes A,B subset R^d into data structures of size O(1/epsilon^{(d-1)/2}) such that we can answer in polylogarithmic time whether A and B intersect approximately. More generally, we can answer this for the images of A and B under affine transformations. Next, we show how to epsilon-approximate the Minkowski sum of two given polytopes defined as the intersection of n halfspaces in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0. Finally, we present a surprising impact of these results to a well studied problem that considers a single convex body. We show how to epsilon-approximate the width of a set of n points in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0, a major improvement over the previous bound of roughly O(n + 1/epsilon^{d-1}) time.
  • 关键词:Minkowski sum; convex intersection; width; approximation
国家哲学社会科学文献中心版权所有