首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Fine-grained Lower Bounds on Cops and Robbers
  • 本地全文:下载
  • 作者:Sebastian Brandt ; Seth Pettie ; Jara Uitto
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:112
  • 页码:1-12
  • DOI:10.4230/LIPIcs.ESA.2018.9
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Cops and Robbers is a classic pursuit-evasion game played between a group of g cops and one robber on an undirected N-vertex graph G. We prove that the complexity of deciding the winner in the game under optimal play requires Omega (N^{g-o(1)}) time on instances with O(N log^2 N) edges, conditioned on the Strong Exponential Time Hypothesis. Moreover, the problem of calculating the minimum number of cops needed to win the game is 2^{Omega (sqrt{N})}, conditioned on the weaker Exponential Time Hypothesis. Our conditional lower bound comes very close to a conditional upper bound: if Meyniel's conjecture holds then the cop number can be decided in 2^{O(sqrt{N}log N)} time. In recent years, the Strong Exponential Time Hypothesis has been used to obtain many lower bounds on classic combinatorial problems, such as graph diameter, LCS, EDIT-DISTANCE, and REGEXP matching. To our knowledge, these are the first conditional (S)ETH-hard lower bounds on a strategic game.
  • 关键词:Cops and Robbers
国家哲学社会科学文献中心版权所有