首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Parallel and I/O-efficient Randomisation of Massive Networks using Global Curveball Trades
  • 本地全文:下载
  • 作者:Corrie Jacobien Carstens ; Michael Hamann ; Ulrich Meyer
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:112
  • 页码:1-15
  • DOI:10.4230/LIPIcs.ESA.2018.11
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Graph randomisation is a crucial task in the analysis and synthesis of networks. It is typically implemented as an edge switching process (ESMC) repeatedly swapping the nodes of random edge pairs while maintaining the degrees involved [Mihail and Zegura, 2003]. Curveball is a novel approach that instead considers the whole neighbourhoods of randomly drawn node pairs. Its Markov chain converges to a uniform distribution, and experiments suggest that it requires less steps than the established ESMC [Carstens et al., 2016]. Since trades however are more expensive, we study Curveball's practical runtime by introducing the first efficient Curveball algorithms: the I/O-efficient EM-CB for simple undirected graphs and its internal memory pendant IM-CB. Further, we investigate global trades [Carstens et al., 2016] processing every node in a single super step, and show that undirected global trades converge to a uniform distribution and perform superior in practice. We then discuss EM-GCB and EM-PGCB for global trades and give experimental evidence that EM-PGCB achieves the quality of the state-of-the-art ESMC algorithm EM-ES [M. Hamann et al., 2017] nearly one order of magnitude faster.
  • 关键词:Graph randomisation; Curveball; I/O-efficiency; Parallelism
国家哲学社会科学文献中心版权所有