首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity
  • 本地全文:下载
  • 作者:Diptarka Chakraborty ; Debarati Das ; Michal Kouck{\'y
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:112
  • 页码:1-15
  • DOI:10.4230/LIPIcs.ESA.2018.12
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A quasi-Gray code of dimension n and length l over an alphabet Sigma is a sequence of distinct words w_1,w_2,...,w_l from Sigma^n such that any two consecutive words differ in at most c coordinates, for some fixed constant c>0. In this paper we are interested in the read and write complexity of quasi-Gray codes in the bit-probe model, where we measure the number of symbols read and written in order to transform any word w_i into its successor w_{i+1}. We present construction of quasi-Gray codes of dimension n and length 3^n over the ternary alphabet {0,1,2} with worst-case read complexity O(log n) and write complexity 2. This generalizes to arbitrary odd-size alphabets. For the binary alphabet, we present quasi-Gray codes of dimension n and length at least 2^n - 20n with worst-case read complexity 6+log n and write complexity 2. This complements a recent result by Raskin [Raskin '17] who shows that any quasi-Gray code over binary alphabet of length 2^n has read complexity Omega(n). Our results significantly improve on previously known constructions and for the odd-size alphabets we break the Omega(n) worst-case barrier for space-optimal (non-redundant) quasi-Gray codes with constant number of writes. We obtain our results via a novel application of algebraic tools together with the principles of catalytic computation [Buhrman et al. '14, Ben-Or and Cleve '92, Barrington '89, Coppersmith and Grossman '75].
  • 关键词:Gray code; Space-optimal counter; Decision assignment tree; Cell probe model
国家哲学社会科学文献中心版权所有