首页    期刊浏览 2025年07月13日 星期日
登录注册

文章基本信息

  • 标题:Efficient and Adaptive Parameterized Algorithms on Modular Decompositions
  • 本地全文:下载
  • 作者:Stefan Kratsch ; Florian Nelles
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:112
  • 页码:1-15
  • DOI:10.4230/LIPIcs.ESA.2018.55
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the influence of a graph parameter called modular-width on the time complexity for optimally solving well-known polynomial problems such as Maximum Matching, Triangle Counting, and Maximum s-t Vertex-Capacitated Flow. The modular-width of a graph depends on its (unique) modular decomposition tree, and can be computed in linear time O(n+m) for graphs with n vertices and m edges. Modular decompositions are an important tool for graph algorithms, e.g., for linear-time recognition of certain graph classes. Throughout, we obtain efficient parameterized algorithms of running times O(f(mw)n+m), O(n+f(mw)m) , or O(f(mw)+n+m) for low polynomial functions f and graphs of modular-width mw. Our algorithm for Maximum Matching, running in time O(mw^2 log mw n+m), is both faster and simpler than the recent O(mw^4n+m) time algorithm of Coudert et al. (SODA 2018). For several other problems, e.g., Triangle Counting and Maximum b-Matching, we give adaptive algorithms, meaning that their running times match the best unparameterized algorithms for worst-case modular-width of mw=Theta(n) and they outperform them already for mw=o(n), until reaching linear time for mw=O(1).
  • 关键词:efficient parameterized algorithms; modular-width; adaptive algorithms
国家哲学社会科学文献中心版权所有