首页    期刊浏览 2025年06月18日 星期三
登录注册

文章基本信息

  • 标题:Subset Sum Quantumly in 1.17^n
  • 本地全文:下载
  • 作者:Alexander Helm ; Alexander May
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:111
  • 页码:1-15
  • DOI:10.4230/LIPIcs.TQC.2018.5
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the quantum complexity of solving the subset sum problem, where the elements a_1, ..., a_n are randomly chosen from Z_{2^{l(n)}} and t = sum_i a_i in Z_{2^{l(n)}} is a sum of n/2 elements. In 2013, Bernstein, Jeffery, Lange and Meurer constructed a quantum subset sum algorithm with heuristic time complexity 2^{0.241n}, by enhancing the classical subset sum algorithm of Howgrave-Graham and Joux with a quantum random walk technique. We improve on this by defining a quantum random walk for the classical subset sum algorithm of Becker, Coron and Joux. The new algorithm only needs heuristic running time and memory 2^{0.226n}, for almost all random subset sum instances.
  • 关键词:Subset sum; Quantum walk; Representation technique
国家哲学社会科学文献中心版权所有