首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:On Natural Deduction for Herbrand Constructive Logics II: Curry-Howard Correspondence for Markov's Principle in First-Order Logic and Arithmetic
  • 本地全文:下载
  • 作者:Federico Aschieri ; Matteo Manighetti
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:97
  • 页码:1-17
  • DOI:10.4230/LIPIcs.TYPES.2016.4
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Intuitionistic first-order logic extended with a restricted form of Markov's principle is constructive and admits a Curry-Howard correspondence, as shown by Herbelin. We provide a simpler proof of that result and then we study intuitionistic first-order logic extended with unrestricted Markov's principle. Starting from classical natural deduction, we restrict the excluded middle and we obtain a natural deduction system and a parallel Curry-Howard isomorphism for the logic. We show that proof terms for existentially quantified formulas reduce to a list of individual terms representing all possible witnesses. As corollary, we derive that the logic is Herbrand constructive: whenever it proves any existential formula, it proves also an Herbrand disjunction for the formula. Finally, using the techniques just introduced, we also provide a new computational interpretation of Arithmetic with Markov's principle.
  • 关键词:Markov's Principle; first-order logic; natural deduction; Curry-Howard
国家哲学社会科学文献中心版权所有