首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Evaluation of an improved tool for non-invasive prediction of neonatal respiratory morbidity based on fully automated fetal lung ultrasound analysis
  • 本地全文:下载
  • 作者:Xavier P. Burgos-Artizzu ; Álvaro Perez-Moreno ; David Coronado-Gutierrez
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-7
  • DOI:10.1038/s41598-019-38576-w
  • 出版社:Springer Nature
  • 摘要:The objective of this study was to evaluate the performance of a new version of quantusFLM®, a software tool for prediction of neonatal respiratory morbidity (NRM) by ultrasound, which incorporates a fully automated fetal lung delineation based on Deep Learning techniques. A set of 790 fetal lung ultrasound images obtained at 24 + 0–38 + 6 weeks’ gestation was evaluated. Perinatal outcomes and the occurrence of NRM were recorded. quantusFLM® version 3.0 was applied to all images to automatically delineate the fetal lung and predict NRM risk. The test was compared with the same technology but using a manual delineation of the fetal lung, and with a scenario where only gestational age was available. The software predicted NRM with a sensitivity, specificity, and positive and negative predictive value of 71.0%, 94.7%, 67.9%, and 95.4%, respectively, with an accuracy of 91.5%. The accuracy for predicting NRM obtained with the same texture analysis but using a manual delineation of the lung was 90.3%, and using only gestational age was 75.6%. To sum up, automated and non-invasive software predicted NRM with a performance similar to that reported for tests based on amniotic fluid analysis and much greater than that of gestational age alone.
国家哲学社会科学文献中心版权所有