首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Plastic-scale-model assembly of ultrathin film MEMS piezoresistive strain sensor with conventional vacuum-suction chip mounter
  • 本地全文:下载
  • 作者:Seiichi Takamatsu ; Shintaro Goto ; Michitaka Yamamoto
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-8
  • DOI:10.1038/s41598-019-39364-2
  • 出版社:Springer Nature
  • 摘要:We developed a plastic-scale-model assembly of an ultrathin film piezoresistive microelectromechanical systems (MEMS) strain sensor with a conventional vacuum-suction chip mounter for the application to flexible and wearable strain sensors. A plastic-scale-model MEMS chip consists of 5-μm ultrathin piezoresistive strain sensor film, ultrathin disconnection parts, and a thick outer frame. The chip mounter applies pressure to the ultrathin piezoresistive strain sensor film and cuts the disconnection parts to separate the sensor film from the outer frame. The sensor film is then picked up and placed on the desired area of a flexible substrate. To cut off and pick up the sensor film in the same manner as with a plastic scale model, the design of the sensor film and disconnection parts of MEMS chips were optimized through numerical simulation and chip-mounting experiments. The success rate of the 5-μm ultrathin sensor film mounting increased by decreasing the number and width of the disconnection parts. For a 5-μm-thick 1 × 5 mm2 sensor film, 4 disconnection parts of 20 μm in width achieved 100% success rate. The fabricated ultrathin MEMS piezoresistive strain sensor exhibited a gauge factor of 100 and high flexibility to withstand 0.37 [1/mm] bending curvature. Our plastic-scale-model assembly with a conventional vacuum-suction chip mounter will contribute to more practical manufacturing of ultrathin MEMS sensors.
国家哲学社会科学文献中心版权所有