首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images
  • 本地全文:下载
  • 作者:Bino Varghese ; Frank Chen ; Darryl Hwang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-018-38381-x
  • 出版社:Springer Nature
  • 摘要:Multiparametric magnetic resonance imaging (mpMRI) has become increasingly important for the clinical assessment of prostate cancer (PCa), but its interpretation is generally variable due to its relatively subjective nature. Radiomics and classification methods have shown potential for improving the accuracy and objectivity of mpMRI-based PCa assessment. However, these studies are limited to a small number of classification methods, evaluation using the AUC score only, and a non-rigorous assessment of all possible combinations of radiomics and classification methods. This paper presents a systematic and rigorous framework comprised of classification, cross-validation and statistical analyses that was developed to identify the best performing classifier for PCa risk stratification based on mpMRI-derived radiomic features derived from a sizeable cohort. This classifier performed well in an independent validation set, including performing better than PI-RADS v2 in some aspects, indicating the value of objectively interpreting mpMRI images using radiomics and classification methods for PCa risk assessment.
国家哲学社会科学文献中心版权所有