摘要:In-stent restenosis (ISR) is still a major cause of failure of endovascular stenting treatment in patients with lower extremity arterial occlusive disease (LEAOD). Sensitive and reliable biomarkers for early diagnosis to predict ISR should be considered. This study was conducted to explore the diagnostic value of microRNA in predicting ISR in patients with LEAOD after endovascular stenting treatment. From March 2014 to July 2016, 208 patients (170 males and 38 females) with LEAOD undergoing interventional treatment were enrolled in this research. Patients were divided into the restenosis and non-restenosis groups according to routine postoperative angiography. Circulating microRNAs expression were detected in 208 participants, including 78 ISR patients, 68 non-ISR patients and 62 healthy volunteers. We selected 6 microRNAs from microarray screening as candidates for further testing via qRT-PCR. A receiver operating characteristic (ROC) curve was generated to assess the diagnostic value of circulating microRNAs in predicting ISR for LEAOD patients. The results showed that circulating microRNA-320a and microRNA-572 in patients with ISR (n = 78) had significantly higher expression levels than it from non-ISR and healthy volunteers. By receiver operating characteristic curve analysis, the sensitivity was 82.1% and the specificity was 63.8% for microRNA-320a; the sensitivity was 69.2% and the specificity was 68.9% for microRNA-572, and the AUC was 0.766 and 0.690 for detection of ISR, respectively. Furthermore, 78 patients with ISR had significantly higher circulating expression levels of microRNA-3937 and microRNA-642a-3p and lower circulating expression levels of microRNA-4669 and microRNA-3138 compared with 68 non-ISR patients and 62 healthy volunteers, but they have no significant difference. We found that differential circulating microRNA expression in patients after stenting with ISR, and the data indicate that circulating microRNA-320a and microRNA-572 have promising value in diagnosing ISR in patients with LEAOD.