首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Confining vertical conducting filament for reliable resistive switching by using a Au-probe tip as the top electrode for epitaxial brownmillerite oxide memristive device
  • 本地全文:下载
  • 作者:Venkata Raveendra Nallagatla ; Janghyun Jo ; Susant Kumar Acharya
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-018-37986-6
  • 出版社:Springer Nature
  • 摘要:We had discovered novel resistance switching phenomena in SrCoOx epitaxial thin films. We have interpreted the results in terms of the topotactic phase transformation between their insulating brownmillerite phase and the conducting perovskite phase and the existence of a rather vertical conducting filament due to its inherent layered structure. However, the rough interface observed between the SrCoOx and the Au top electrode (area ~10000 μm2) was assumed to result in the observed fluctuation in key switching parameters. In order to verify the effect of rough interface on the switching performance in the SrCoOx device, in this work, we studied the resistive switching properties of a SrCoOx device by placing a Au-coated tip (end area ~0.5 μm2) directly on the film surface as the top electrode. The resulting device displayed much improved endurance and showed high uniformity in key switching parameters as compared to the device having a large top electrode area. A simulation result confirmed that the Au-coated tip provides a local confinement of the electrical field, resulting in confinement of oxygen ion distribution and therefore localization of the conducting filament. By minimizing other free and uncontrollable parameters, the designed experiment here provides the most direct and isolated evidence that the rough interface between electrode and ReRAM matrix is detrimental for the reproducibility of resistivity switching phenomena.
国家哲学社会科学文献中心版权所有