首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Large-scale experiments into the tsunamigenic potential of different iceberg calving mechanisms
  • 本地全文:下载
  • 作者:Valentin Heller ; Fan Chen ; Markus Brühl
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-018-36634-3
  • 出版社:Springer Nature
  • 摘要:Mass balance analysis of ice sheets is a key component to understand the effects of global warming. A significant component of ice sheet and shelf mass balance is iceberg calving, which can generate large tsunamis endangering human beings and coastal infrastructure. Such iceberg-tsunamis have reached amplitudes of 50 m and destroyed harbours. Calving icebergs interact with the surrounding water through different mechanisms and we investigate five; A: capsizing, B: gravity-dominated fall, C: buoyancy-dominated fall, D: gravity-dominated overturning and E: buoyancy-dominated overturning. Gravity-dominated icebergs essentially fall into the water body whereas buoyancy-dominated icebergs rise to the water surface. We find with unique large-scale laboratory experiments that iceberg-tsunami heights from gravity-dominated mechanisms (B and D) are roughly an order of magnitude larger than from A, C and E. A theoretical model for released iceberg energy supports this finding and the measured wave periods upscaled to Greenlandic outlet glaciers agree with field observations. Whilst existing empirical equations for landslide-tsunamis establish estimates of an upper envelope of the maximum iceberg-tsunami heights, they fail to capture the physics of most iceberg-tsunami mechanisms.
国家哲学社会科学文献中心版权所有