首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:CT Slice Thickness and Convolution Kernel Affect Performance of a Radiomic Model for Predicting EGFR Status in Non-Small Cell Lung Cancer: A Preliminary Study
  • 本地全文:下载
  • 作者:Yajun Li ; Lin Lu ; Manjun Xiao
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:17913
  • DOI:10.1038/s41598-018-36421-0
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:), whereas the impact of reconstruction kernel was not significant. Our study showed that the optimal prediction of EGFR mutational status in early stage LACs was achieved by using thin CT-scan slices, independently of convolution kernels. Results from the prediction model suggest that tumor heterogeneity is associated with EGFR mutation.
国家哲学社会科学文献中心版权所有