首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Using a three-compartment model improves the estimation of iohexol clearance to assess glomerular filtration rate
  • 本地全文:下载
  • 作者:Max Taubert ; Natalie Ebert ; Peter Martus
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:17723
  • DOI:10.1038/s41598-018-35989-x
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Plasma clearance of iohexol is a key tool to precisely determine glomerular filtration rate (GFR) in clinical research and clinical practice. Despite evidence that iohexol pharmacokinetics are described best by three-compartment models, two-compartment approaches (Schwartz approach) are customary, which might result in avoidable bias and imprecision. We aimed to provide a population pharmacokinetic (popPK) model of iohexol by re-evaluating data from the Berlin Initiative Study (BIS) to compare respective clearance estimates to the Schwartz approach and to assess the impact of revised clearance estimates on the BIS equations. A popPK model was developed based on iohexol plasma samples (8-10 per subject, iohexol dose 3235 mg) from 570 elderly patients. A three-compartment model appropriately described the pharmacokinetics of iohexol (clearance 57.4 mL/min, CV 33%). Compared to the three-compartment model, clearance values were overestimated by the Schwartz approach (bias 6.5 mL/min), resulting in limited effects on regression coefficients of the BIS equations (e.g., proportionality factor of BIS2 changed from 767 to 720). Predictions based on the BIS2 equation were biased (5.4 mL/min/1.73 m²) and the sensitivity to detect a GFR < 60 mL/min/1.73 m² was low compared to the revised equation (72% versus 89%). Three-compartment models should be employed to assess iohexol pharmacokinetics.
国家哲学社会科学文献中心版权所有