首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Perlin Noise-Based Augmentation Strategy for Deep Learning with Small Data Samples of HRCT Images
  • 本地全文:下载
  • 作者:Hyun-Jin Bae ; Chang-Wook Kim ; Namju Kim
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:17687
  • DOI:10.1038/s41598-018-36047-2
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Deep learning is now widely used as an efficient tool for medical image classification and segmentation. However, conventional machine learning techniques are still more accurate than deep learning when only a small dataset is available. In this study, we present a general data augmentation strategy using Perlin noise, applying it to pixel-by-pixel image classification and quantification of various kinds of image patterns of diffuse interstitial lung disease (DILD). Using retrospectively obtained high-resolution computed tomography (HRCT) images from 106 patients, 100 regions-of-interest (ROIs) for each of six classes of image patterns (normal, ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation) were selected for deep learning classification by experienced thoracic radiologists. For extra-validation, the deep learning quantification of the six classification patterns was evaluated for 92 HRCT whole lung images for which hand-labeled segmentation masks created by two experienced radiologists were available. FusionNet, a convolutional neural network (CNN), was used for training, test, and extra-validation on classifications of DILD image patterns. The accuracy of FusionNet with data augmentation using Perlin noise (89.5%, 49.8%, and 55.0% for ROI-based classification and whole lung quantifications by two radiologists, respectively) was significantly higher than that with conventional data augmentation (82.1%, 45.7%, and 49.9%, respectively). This data augmentation strategy using Perlin noise could be widely applied to deep learning studies for image classification and segmentation, especially in cases with relatively small datasets.
国家哲学社会科学文献中心版权所有