首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A Convenient Non-harm Cervical Spondylosis Intelligent Identity method based on Machine Learning
  • 本地全文:下载
  • 作者:Nana Wang ; Xi Huang ; Yi Rao
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:17430
  • DOI:10.1038/s41598-018-32377-3
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Cervical spondylosis (CS), a most common orthopedic diseases, is mainly identified by the doctor's judgment from the clinical symptoms and cervical change provided by expensive instruments in hospital. Owing to the development of the surface electromyography (sEMG) technique and artificial intelligence, we proposed a convenient non-harm CS intelligent identify method EasiCNCSII, including the sEMG data acquisition and the CS identification. Faced with the limit testable muscles, the data acquisition method are proposed to conveniently and effectively collect data based on the tendons theory and CS etiology. Faced with high-dimension and the weak availability of the data, the 3-tier model EasiAI is developed to intelligently identify CS. The common features and new features are extracted from raw sEMG data in first tier. The EasiRF is proposed in second tier to further reduce the data dimension, improving the performance. A classification model based on gradient boosted regression tree is developed in third tier to identify CS. Compared with 4 common machine learning classification models, the EasiCNCSII achieves best performance of 91.02% in mean accuracy, 97.14% in mean sensitivity, 81.43% in mean specificity, 0.95 in mean AUC.
国家哲学社会科学文献中心版权所有