摘要:Bright colours in distasteful prey warn off predators, but processes associated with ontogenetic acquisition of warning colours and distasteful compounds have been studied in only a few organisms. Here, we study spotted lanternflies (Lycorma delicatula; Fulgoridae) that change to red colouration when they narrow their host plant preferences to primarily the tree of heaven (Ailanthus altissima; Simaroubaceae), which is chemically defended by quassinoids. In experiments, we showed that birds taste-avoided lanternflies collected on Ailanthus but not those collected on the secondary hosts. Birds also taste-avoided seeds infused with ailanthone, the main quassinoid sequestered from Ailanthus by lanternflies as shown through mass spectrometry analyses. Hence, the narrowing of host preferences by lanternflies synchronizes the timing of change to red colour with the acquisition of quassinoid defenses. A schematic graphical population-level model of these processes is provided. This is the first report of quassinoid sequestration by insects and the first evidence that Simaroubaceae plants provide defensive chemicals to insects. This is the first report of a fulgoroid insect sequestering identified chemical defenses. The results highlight the importance of the pan-tropical taxon Fulgoridae for evolutionary biology of complex aposematic strategies and for understanding the links between timing of defense sequestration, timing of host plant preference shifts, and timing of colour change.