首页    期刊浏览 2025年05月24日 星期六
登录注册

文章基本信息

  • 标题:Terminal restriction fragment length polymorphism is an “old school” reliable technique for swift microbial community screening in anaerobic digestion
  • 本地全文:下载
  • 作者:Jo De Vrieze ; Umer Z. Ijaz ; Aaron M. Saunders
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:16818
  • DOI:10.1038/s41598-018-34921-7
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:The microbial community in anaerobic digestion has been analysed through microbial fingerprinting techniques, such as terminal restriction fragment length polymorphism (TRFLP), for decades. In the last decade, high-throughput 16S rRNA gene amplicon sequencing has replaced these techniques, but the time-consuming and complex nature of high-throughput techniques is a potential bottleneck for full-scale anaerobic digestion application, when monitoring community dynamics. Here, the bacterial and archaeal TRFLP profiles were compared with 16S rRNA gene amplicon profiles (Illumina platform) of 25 full-scale anaerobic digestion plants. The α-diversity analysis revealed a higher richness based on Illumina data, compared with the TRFLP data. This coincided with a clear difference in community organisation, Pareto distribution, and co-occurrence network statistics, i.e., betweenness centrality and normalised degree. The β-diversity analysis showed a similar clustering profile for the Illumina, bacterial TRFLP and archaeal TRFLP data, based on different distance measures and independent of phylogenetic identification, with pH and temperature as the two key operational parameters determining microbial community composition. The combined knowledge of temporal dynamics and projected clustering in the β-diversity profile, based on the TRFLP data, distinctly showed that TRFLP is a reliable technique for swift microbial community dynamics screening in full-scale anaerobic digestion plants.
国家哲学社会科学文献中心版权所有