首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Impact of measurement noise, experimental design, and estimation methods on Modular Response Analysis based network reconstruction
  • 本地全文:下载
  • 作者:Caterina Thomaseth ; Dirk Fey ; Tapesh Santra
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:16217
  • DOI:10.1038/s41598-018-34353-3
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Modular Response Analysis (MRA) is a method to reconstruct signalling networks from steady-state perturbation data which has frequently been used in different settings. Since these data are usually noisy due to multi-step measurement procedures and biological variability, it is important to investigate the effect of this noise onto network reconstruction. Here we present a systematic study to investigate propagation of noise from concentration measurements to network structures. Therefore, we design an in silico study of the MAPK and the p53 signalling pathways with realistic noise settings. We make use of statistical concepts and measures to evaluate accuracy and precision of individual inferred interactions and resulting network structures. Our results allow to derive clear recommendations to optimize the performance of MRA based network reconstruction: First, large perturbations are favorable in terms of accuracy even for models with non-linear steady-state response curves. Second, a single control measurement for different perturbation experiments seems to be sufficient for network reconstruction, and third, we recommend to execute the MRA workflow with the mean of different replicates for concentration measurements rather than using computationally more involved regression strategies.
国家哲学社会科学文献中心版权所有