首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Pathogen Identification Direct From Polymicrobial Specimens Using Membrane Glycolipids
  • 本地全文:下载
  • 作者:William E. Fondrie ; Tao Liang ; Benjamin L. Oyler
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:15857
  • DOI:10.1038/s41598-018-33681-8
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:With the increased prevalence of multidrug-resistant Gram-negative bacteria, the use of colistin and other last-line antimicrobials is being revisited clinically. As a result, there has been an emergence of colistin-resistant bacterial species, including Acinetobacter baumannii and Klebsiella pneumoniae. The rapid identification of such pathogens is vitally important for the effective treatment of patients. We previously demonstrated that mass spectrometry of bacterial glycolipids has the capacity to identify and detect colistin resistance in a variety of bacterial species. In this study, we present a machine learning paradigm that is capable of identifying A. baumannii, K. pneumoniae and their colistin-resistant forms using a manually curated dataset of lipid mass spectra from 48 additional Gram-positive and -negative organisms. We demonstrate that these classifiers detect A. baumannii and K. pneumoniae in isolate and polymicrobial specimens, establishing a framework to translate glycolipid mass spectra into pathogen identifications.
国家哲学社会科学文献中心版权所有