摘要:Long-lived simultaneous changes in the autodependency of dynamic system variables characterize crucial events as epileptic seizures and volcanic eruptions and are expected to precede psychiatric conditions. To understand and predict such phenomena, methods are needed that detect such changes in multivariate time series. We put forward two methods: First, we propose KCP-AR, a novel adaptation of the general-purpose KCP (Kernel Change Point) method. Whereas KCP is implemented on the raw data and does not shed light on which parameter changed, KCP-AR is applied to the running autocorrelations, allowing to focus on changes in this parameter. Second, we revisit the regime switching AR(1) approach and propose to fit models wherein only the parameters capturing autodependency differ across the regimes. We perform a simulation study comparing both methods: KCP-AR outperforms regime switching AR(1) when variables are uncorrelated, while the latter is more reliable when multicolinearity is severe. Regime switching AR(1), however, may yield recurrent switches even when the change is long-lived. We discuss an application to psychopathology data where we investigate whether emotional inertia -the autodependency of affective states- changes before a relapse into depression.