摘要:Interhemispheric connectivity between auditory areas is highly relevant for normal auditory perception and alterations are a major factor for the development of auditory verbal hallucinations. Surprisingly, there is no combined EEG-DTI study directly addressing the role of functional and structural connectivity in the same group of subjects. Accordingly, nothing is known about the relationship between functional connectivity such as gamma-band synchrony, structural integrity of the interhemispheric auditory pathways (IAPs) and language lateralization as well as whether the gamma-band synchrony is configured on the backbone of IAPs. By applying multimodal imaging of 64-channel EEG and DTI tractography, we investigated in 27 healthy volunteers the functional gamma-band synchrony between either bilateral primary or secondary auditory cortices from eLORETA source-estimation during dichotic listening, as well as the correspondent IAPs from which fractional anisotropy (FA) values were extracted. Correlation and regression analyses revealed highest values for gamma-band synchrony, followed by FA for secondary auditory cortices, which were both significantly related to a reduced language lateralization. There was no such association between the white-matter microstructure and gamma-band synchrony, suggesting that structural connectivity might also be relevant for other (minor) aspects of information transfer in addition to gamma-band synchrony, which are not detected in the present coupling analyses. The combination of multimodal EEG-DTI imaging provides converging evidence of neural correlates by showing that both stronger pathways and increased gamma-band synchrony within one cohort of subjects are related to a reduced leftward-lateralization for language.