首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Recurrent Neural Network for Predicting Transcription Factor Binding Sites
  • 本地全文:下载
  • 作者:Zhen Shen ; Wenzheng Bao ; De-Shuang Huang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:15270
  • DOI:10.1038/s41598-018-33321-1
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:It is well known that DNA sequence contains a certain amount of transcription factors (TF) binding sites, and only part of them are identified through biological experiments. However, these experiments are expensive and time-consuming. To overcome these problems, some computational methods, based on k-mer features or convolutional neural networks, have been proposed to identify TF binding sites from DNA sequences. Although these methods have good performance, the context information that relates to TF binding sites is still lacking. Research indicates that standard recurrent neural networks (RNN) and its variants have better performance in time-series data compared with other models. In this study, we propose a model, named KEGRU, to identify TF binding sites by combining Bidirectional Gated Recurrent Unit (GRU) network with k-mer embedding. Firstly, DNA sequences are divided into k-mer sequences with a specified length and stride window. And then, we treat each k-mer as a word and pre-trained word representation model though word2vec algorithm. Thirdly, we construct a deep bidirectional GRU model for feature learning and classification. Experimental results have shown that our method has better performance compared with some state-of-the-art methods. Additional experiments about embedding strategy show that k-mer embedding will be helpful to enhance model performance. The robustness of KEGRU is proved by experiments with different k-mer length, stride window and embedding vector dimension.
国家哲学社会科学文献中心版权所有