摘要:Cr-segregation by spinodal decomposition and G-phase precipitation were observed in δ-ferrite of austenitic stainless steel welds thermally aged at 400 °C for up to 20,000 h. A reversion heat treatment (R-HT) at 550 °C for 1 h dissolved the Cr-segregation in the aged welds while some intermetallic precipitates were present. The double-loop electrochemical potentiokinetic reactivation (DL-EPR) analysis showed no significant differences among them. However, after selective etching of the austenite phase, the DL-EPR values of δ-ferrite phase steadily increased with aging time due to the growth of Cr-depleted regions by spinodal decomposition. The electrochemical behavior of δ-ferrite after R-HT condition was similar to that of unaged welds, indicating the intermetallic precipitates did not affect the corrosion resistance in this case. Overall, DL-EPR analysis of δ-ferrite phase provided better correlation with spinodal decomposition.