摘要:. For the 15 considered models, four even miss the phase transition, indicating that the simulated SAT network is too stable to be significantly changed by the SSTA below. Only four models can be considered cautiously with some skills in simulating the observed phase transition of the SAT network. By comparing the simulated SSTA patterns with the node vulnerabilities, which is the chance of each node being isolated during a ENSO event, we find that the improperly simulated sea-air interactions are responsible for the missing of the observed percolation phase transition. Accordingly, a careful study of the sea-air couplers, as well as the atmospheric components of the CMIP5 models is suggested. Since the percolation phase transition of the SAT network is a useful phenomenon to indicate whether the ENSO impacts can be transferred remotely, it deserves more attention for future model development.