首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Ahnak promotes tumor metastasis through transforming growth factor-β-mediated epithelial-mesenchymal transition
  • 本地全文:下载
  • 作者:Mira Sohn ; Sunmee Shin ; Jung-Yeon Yoo
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:14379
  • DOI:10.1038/s41598-018-32796-2
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Previously, we reported a molecular mechanism by which Ahnak potentiates transforming growth factor-β (TGFβ) signaling during cell growth. Here, we show that Ahnak induces epithelial-mesenchymal transition (EMT) in response to TGFβ. EMT phenotypes, including altered in cell morphology, and expression patterns of various EMT marker genes were detected in HaCaT keratinocytes transfected with Ahnak-specific siRNA. Knockdown of Ahnak expression in HaCaT keratinocytes resulted in attenuated cell migration and invasion. We found that Ahnak activates TGFβ signaling via Smad3 phosphorylation, leading to enhanced Smad3 transcriptional activity. To validate function of Ahnak in EMT of B16F10 cells having high metastatic and tumorigenic properties, we established B16F10 cells with stable knockdown of Ahnak. N-cadherin expression and Smad3 phosphorylation were significantly decreased in B16F10-shAhnak cells, compared to B16F10-shControl cells after treatment of TGFβ. Moreover, TGFβ failed to induce cell migration and cell invasion in B16F10-shAhnak cells. To determine whether Ahnak regulates the metastatic activity of B16F10 cells, we established a lung metastasis model in C57BL/6 mice via tail vein injection of B16F10-shAhnak cells. Lung metastasis was significantly suppressed in mice injected with B16F10-shAhnak cells, compared to those injected with B16F10-shControl cells. Taken together, we propose that TGFβ-Ahnak signaling axis regulates EMT during tumor metastasis.
国家哲学社会科学文献中心版权所有