摘要:) using common laboratory equipment. We demonstrate the utility of this method using chemicals commonly used to monitor changes in membrane traffic. When compared to traditional agar-based plating methods, this method is more sensitive and can detect defects not apparent using other protocols. Additionally, this method reduces the experimental protocol from five days to 18 hours for the toxic amino acid canavanine. Furthermore, this method provides reliable results using lower amounts of chemicals. Finally, this method is easily adapted to additional chemicals as demonstrated with an engineered system that activates the spindle assembly checkpoint in response to rapamycin with differing efficiencies. This approach provides researchers with a cost-effective method to perform chemical genetic profiling without specialized equipment.