摘要:Occasional beer spoilage incidents caused by false-negative isolation of lactic acid bacteria (LAB) in the viable but non-culturable (VBNC) state, result in significant profit loss and pose a major concern in the brewing industry. In this study, both culturable and VBNC cells of an individual Lactobacillus harbinensis strain BM-LH14723 were identified in one spoiled beer sample by genome sequencing, with the induction and resuscitation of VBNC state for this strain further investigated. Formation of the VBNC state was triggered by low-temperature storage in beer (175 ± 1.4 days) and beer subculturing (25 ± 0.8 subcultures), respectively, and identified by both traditional staining method and PMA-PCR. Resuscitated cells from the VBNC state were obtained by addition of catalase rather than temperature upshift, changing medium concentration, and adding other chemicals, and both VBNC and resuscitated cells retained similar beer-spoilage capability as exponentially growing cells. In addition to the first identification of both culturable and VBNC cells of an individual L. harbinensis strain from spoiled beer, this study also for the first time reported the VBNC induction and resuscitation, as well as verification of beer-spoilage capability of VBNC and resuscitated cells for the L. harbinensis strain. Genes in association with VBNC state were also identified by the first genome sequencing of beer spoilage L. harbinensis. The results derived from this study suggested the contamination and spoilage of beer products by VBNC and resuscitated L. harbinensis strain BM-LH14723.