首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:KampoDB, database of predicted targets and functional annotations of natural medicines
  • 本地全文:下载
  • 作者:Ryusuke Sawada ; Michio Iwata ; Masahito Umezaki
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:11216
  • DOI:10.1038/s41598-018-29516-1
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Natural medicines (i.e., herbal medicines, traditional formulas) are useful for treatment of multifactorial and chronic diseases. Here, we present KampoDB ( http://wakanmoview.inm.u-toyama.ac.jp/kampo/ ), a novel platform for the analysis of natural medicines, which provides various useful scientific resources on Japanese traditional formulas Kampo medicines, constituent herbal drugs, constituent compounds, and target proteins of these constituent compounds. Potential target proteins of these constituent compounds were predicted by docking simulations and machine learning methods based on large-scale omics data (e.g., genome, proteome, metabolome, interactome). The current version of KampoDB contains 42 Kampo medicines, 54 crude drugs, 1230 constituent compounds, 460 known target proteins, and 1369 potential target proteins, and has functional annotations for biological pathways and molecular functions. KampoDB is useful for mode-of-action analysis of natural medicines and prediction of new indications for a wide range of diseases.
国家哲学社会科学文献中心版权所有