首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis
  • 本地全文:下载
  • 作者:Tanja Vajen ; Rory R. Koenen ; Isabella Werner
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:10647
  • DOI:10.1038/s41598-018-29026-0
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Myocardial infarction (MI) is a major cause of death in Western countries and finding new strategies for its prevention and treatment is thus of high priority. In a previous study, we have demonstrated a pathophysiologic relevance for the heterophilic interaction of CCL5 and CXCL4 in the progression of atherosclerosis. A specifically designed compound (MKEY) to block this CCL5-CXCR4 interaction is investigated as a potential therapeutic in a model of myocardial ischemia/reperfusion (I/R) damage. 8 week-old male C57BL/6 mice were intravenously treated with MKEY or scrambled control (sMKEY) from 1 day before, until up to 7 days after I/R. By using echocardiography and intraventricular pressure measurements, MKEY treatment resulted in a significant decrease in infarction size and preserved heart function as compared to sMKEY-treated animals. Moreover, MKEY treatment significantly reduced the inflammatory reaction following I/R, as revealed by specific staining for neutrophils and monocyte/macrophages. Interestingly, MKEY treatment led to a significant reduction of citrullinated histone 3 in the infarcted tissue, showing that MKEY can prevent neutrophil extracellular trap formation in vivo. Disrupting chemokine heterodimers during myocardial I/R might have clinical benefits, preserving the therapeutic benefit of blocking specific chemokines, and in addition, reducing the inflammatory side effects maintaining normal immune defence.
国家哲学社会科学文献中心版权所有