摘要:in the visible and infrared regions. At low local doping concentration, the effects of the dopant sites on the electronic structure of the material are additive, so increasing the doping concentration will enhance the optical absorption properties of the material in the visible and infrared regions. Further increasing the doping concentration will result in a larger gap between the maximum edge of impurity bands and the conduction band minimum, and will undermine the optical absorption in the visible and infrared region. Such effects are caused by the local geometry change at the high local doping concentration with the dopants displaced from the original O sites, so the resulting impurity bands are no long the superpositions of the impurity bands of each individual on-site dopant atom. Switching from S-doping to Se-doping decreases the gap between the maximum edge of the impurity bands and conduction band minimum, and leads to the optical absorption edge red-shifting further into the visible and infrared regions.