首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Development of a computer-aided tool for the pattern recognition of facial features in diagnosing Turner syndrome: comparison of diagnostic accuracy with clinical workers
  • 本地全文:下载
  • 作者:Shi Chen ; Zhou-xian Pan ; Hui-juan Zhu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:9317
  • DOI:10.1038/s41598-018-27586-9
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Technologies applied for the recognition of facial features in diagnosing certain disorders seem to be promising in reducing the medical burden and improve the efficiency. This pilot study aimed to develop a computer-assisted tool for the pattern recognition of facial features for diagnosing Turner syndrome (TS). Photographs of 54 patients with TS and 158 female controls were collected from July 2016 to May 2017. Finally, photographs of 32 patients with TS and 96 age-matched controls were included in the study that were further divided equally into training and testing groups. The process of automatic classification consisted of image preprocessing, facial feature extraction, feature reduction and fusion, automatic classification, and result presentation. A total of 27 physicians and 21 medical students completed a web-based test including the same photographs used in computer testing. After training, the automatic facial classification system for diagnosing TS achieved a 68.8% sensitivity and 87.5% specificity (and a 67.6% average sensitivity and 87.9% average specificity after resampling), which was significantly higher than the average sensitivity (57.4%, P < 0.001) and specificity (75.4%, P < 0.001) of 48 participants, respectively. The accuracy of this system was satisfactory and better than the diagnosis by clinicians. However, the system necessitates further improvement for achieving a high diagnostic accuracy in clinical practice.
国家哲学社会科学文献中心版权所有